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Association of Src Tyrosine Kinase with a
Human Potassium Channel Mediated by

SH3 Domain
Todd C. Holmes, Debra A. Fadool, Ruibao Ren,

Irwin B. Levitan*

The human Kv1.5 potassium channel (hKv1.5) contains proline-rich sequences identical
to those that bind to Src homology 3 (SH3) domains. Direct association of the Src tyrosine
kinase with cloned hKv1.5 and native hKv1.5 in human myocardium was observed. This
interaction was mediated by the proline-rich motif of hKv1.5 and the SH3 domain of Src.
Furthermore, hKv1.5 was tyrosine phosphorylated, and the channel current was sup-
pressed, in cells coexpressing v-Src. These results provide direct biochemical evidence
for a signaling complex composed of a potassium channel and a protein tyrosine kinase.

Potassium channels are important for such
cellular electrical properties as resting poten-
tial, excitability, and the repolarization of the
action potential. Thus, modulation of these
channels can profoundly affect physiological
processes including neuronal integration, ves-
icle secretion, and muscle contraction. The
modulation of potassium channel activity by
serine-threonine kinases has been studied ex-
tensively (1). The recently discovered PYK2
tyrosine kinase (2), as well as endogenous
tyrosine kinases in human embryonic kidney
(HEK) 293 cells (3), can also phosphorylate
and suppress the activity of potassium chan-
nels. In spite of emerging evidence concern-
ing the functional effects of tyrosine phospho-
rylation of potassium channels, there is no
information available about the mechanisms
of targeting and association of these channels
with tyrosine kinases. However, the existence
of signaling complexes consisting of ion chan-

nels and closely associated protein kinases and
phosphatases has been inferred from biochem-
ical and functional electrophysiological stud-
ies (4).

Specific protein-protein interactions be-
tween signaling proteins are mediated by
modular binding domains (5). Among the
first of these to be characterized was a con-
served sequence found in the Src tyrosine
kinase, known as the Src homology 3 (SH3)
domain. SH3 domains bind to proline-rich
regions in partner proteins. We examined the
sequences of mammalian voltage-dependent
potassium channels, and noted that several
species isoforms of Kv1.5—including those
from human (hKv1.5), dog, and rabbit (6)—
contain one to two copies of the preferred Src
SH3 domain binding motif RPLPXXP (7, 8).
In particular, hKv1.5 contains two repeats of
the sequence RPLPPLP between amino acid
residues 65 and 82 of the channel protein (6,
8, 9). To determine whether hKv1.5 and Src
are associated in vivo, we coexpressed the
channel and kinase in HEK 293 cells and
tested for their interaction by immunoprecipi-
tation followed by protein immunoblotting
with specific antibodies to hKv1.5 and Src
(10).

When hKv1.5 and associated proteins
were immunoprecipitated from cell lysates
with a specific antibody, Src was co-precipi-
tated (Fig. 1A). Similarly, when Src and as-
sociated proteins were immunoprecipitated
from HEK 293 cell lysates, hKv1.5 co-precip-
itated with endogenous and coexpressed Src
(Fig. 1A). Expression of hKv1.5 protein was
not altered by v-Src coexpression, as verified
by protein immunoblot analysis of cell lysates
with antibodies directed against tagged (Fig.
1A) and native (Fig. 2A) sequences of the
channel. Furthermore, immunoblot (Fig. 1A)
or protein silver stain (Fig. 3A) analysis of
immunoprecipitates demonstrated that the ef-
ficiency of immunoprecipitation of hKv1.5
was not affected by v-Src coexpression. Enzy-
matic activity of Src also co-precipitated with
hKv1.5, as detected by an in vitro kinase assay
with hKv1.5 immunoprecipitates and an Src-
specific substrate (11) (Fig. 1B).

The association between hKv1.5 and Src
was also observed in human tissue. Native
Src was detected in immunoprecipitates,
prepared with a Kv1.5 antiserum, from hu-
man myocardium ventricle tissue lysates
(Fig. 1C). The native Src that co-immuno-
precipitated with native Kv1.5 co-migrated
on protein immunoblots with native Src,
immunoprecipitated directly with a poly-
clonal anti-Src antibody (Fig. 1C). Thus
association of hKv1.5 and Src occurs under
physiological conditions, and does not de-
pend on expression in a heterologous sys-
tem. This association may contribute to the
co-localization of Kv1.5 and Src in cellular
adhesion zones in myocardium (12). Al-
though the stoichiometry of the association
between hKv1.5 and Src is not known, only
a fraction of the total myocardial Src co-
immunoprecipitated with hKv1.5 (Fig. 1C),
consistent with the fact that Src phosphor-
ylates other substrates.

There are specific sequence requirements
for the association of hKv1.5 and Src. For
example the NH2-terminal region of the rat
Kv1.5 (rKv1.5) channel also contains a pro-
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line-rich motif (9, 13), but this sequence
(RPLPPMA) (8) does not appear to be favor-
able for binding to the Src SH3 domain, as
shown by the absence of selection of this
sequence with phage display libraries (7). In
contrast to hKv1.5, rKv1.5 failed to co-immu-
noprecipitate with Src (Fig. 2A). Thus, the
association between channel and Src is de-
tected only for the hKv1.5 channel isoform,
possibly because its proline-rich binding motif
is preferred by the Src SH3 domain. In addi-
tion phospholipase C–g and the p85 regula-
tory subunit of phosphatidylinositol 3–kinase,
which contain SH3 domains with different
binding sequence requirements than that of
Src (7), do not co-immunoprecipitate with
hKv1.5 (14).

We tested hKv1.5 binding to the Src SH3
domain itself expressed as a fusion protein
with glutathione-S-transferase (GST) (15).
Cell lysates prepared from vector control and
hKv1.5 transfected cells were incubated with
a GST fusion protein containing the Src SH3
domain (GST-Src-SH3) or no insert (GST).

The hKv1.5 protein was effectively precipi-
tated by GST-Src-SH3, but not by GST
(Fig. 2B). The specificity of this interaction
was tested by preabsorption of the fusion
proteins with a peptide containing the se-
quence of the proline-rich region of hKv1.5
(peptide hKv1.562-83). Binding of hKv1.5 to
GST-Src-SH3 was attenuated by preabsorp-
tion of the fusion protein with peptide
Kv1.562-83 (Fig. 2B). The direct binding of
the Src SH3 domain to hKv1.5 was demon-
strated in a filter binding assay (far Western
blot). GST-Src-SH3 bound to hKv1.5 on
the filter, whereas no binding was detected
with rKv1.5 (Fig. 2C). The role of the pro-
line-rich motif in the channel in the binding
of GST-Src-SH3 to hKv1.5 was demonstrat-
ed further by the absence of filter binding
after preabsorption of the GST-Src-SH3
with peptide hKv1.562-83 (Fig. 2C).

The hKv1.5 protein was tyrosine phospho-
rylated when it was coexpressed with v-Src
(Fig. 3A). To determine whether coexpres-
sion of v-Src influenced channel activity, we

measured hKv1.5 macroscopic currents in
cell-attached membrane patches, with and
without v-Src coexpression (3, 16). Current
through hKv1.5 channels was suppressed
when the channel was coexpressed with v-Src
(Fig. 3B), even though channel protein ex-
pression was not altered (Fig. 3A; see also
Figs. 1A and 2A). We do not yet know
whether the suppression of hKv1.5 current
(Fig. 3B) results from tyrosine phosphoryl-
ation of the channel protein (Fig. 3A), or
whether direct binding of hKv1.5 to Src is
required for either of these phenomena.

Many mammalian ion channels, including
channels that are known to be modulated by
tyrosine kinases, have proline-rich sequences
that may bind to SH3 domains (9). Further-
more, signaling complexes containing multi-
ple protein kinases, or ion channels together
with scaffolding and regulatory proteins, may
be common in cells (4, 17). Potential conse-
quences of a closely associated channel-kinase
signaling complex include increased specific-
ity of signaling pathways, faster coupling, and
a higher probability of channel phosphoryl-
ation after kinase activation.
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Fig. 2. Domains that mediate binding
of hKv1.5 to Src. (A) HEK 293 cells
were transfected with CMV vector
with no insert (control), vector encod-
ing v-Src, vector encoding hKv1.5 or
rKv1.5, or two separate vectors, one
encoding hKv1.5 or rKv1.5 and the
other encoding v-Src (10, 15). Ex-
pression of hKv1.5 and rKv1.5 was
detected in cell lysates by protein im-
munoblotting with anti-Kv1.5 (19),
which recognizes both channels (top
panel). Because this antibody recog-
nizes rKv1.5 much better than
hKv1.5, the two parts of this panel
were exposed for different times. The
apparent doublet in the rKv1.5 lanes
may represent phosphorylated or gly-
cosylated or both types of isoforms of
the channel protein (3). Anti-Src IP,
separated on immunoblots, were
probed with anti-Kv1.5 (bottom
panel) (n 5 4). (B) HEK 293 cells
were transfected with CMV vectors
coding for vector with no insert (con-
trol) or hKv1.5. Expression of hKv1.5
was confirmed by immunoblotting
the cell lysates with anti-tag-hKv1.5
(top panel). Cell lysates were incu-
bated with GST alone or GST fusion
protein containing the Src SH3 do-
main (GST-Src-SH3) (22), with or
without fusion protein preabsorption
with a peptide corresponding to the
proline-rich sequence comprising
amino acids 62 through 83 of
hKv1.5 (peptide hKv1.562-83) (15).
Proteins bound to GST fusion pro-
teins were separated by SDS-PAGE, and immunoblots were probed with anti-tag-hKv1.5 (bottom panel)
(n 5 4). (C) Far western blots were prepared with anti-Kv1.5 IP from cells transfected with hKv1.5 or
rKv1.5. The blots were probed with biotinylated GST-Src-SH3 (1 mg/ml) (22) (top panel; the arrow
indicates position of the hKv1.5 band) or biotinylatedGST-Src-SH3 preabsorbedwith peptide hKv1.562-83
(bottom panel). The blots were then incubated with avidin-horseradish peroxidase, and bound fusion
protein was visualized by ECL (n 5 4).

Fig. 3. Tyrosine phos-
phorylation of hKv1.5
and suppression of
channel current by coex-
pression with v-Src. (A)
HEK 293 cells were
transfected with CMV
vectors as indicated:
vector with no insert
(control); v-Src; hKv1.5;
or one vector encoding
hKv1.5 and another encoding v-Src. Cells were lysed, and proteins were immunoprecipitated
with anti-tag-hKv1.5. IP were separated by SDS-PAGE, and protein was detected by silver
stain (20) (top panel). Immunoblots (bottom panel) were probed with antibody 4G10 to
phosphotyrosine (n 5 4). (B) HEK 293 cells were transfected with a CMV vector encoding
hKv1.5 or one vector encoding hKv1.5 and another encoding v-Src. Macroscopic currents
evoked by a series of depolarizing voltage pulses were recorded from cell-attachedmembrane
patches (3, 16) 2 days after transfection. The peak current at 140 mV was 592 6 163 pA (mean 6 SEM; n 5 8) in patches from cells expressing hKv1.5 alone,
and 27 6 15 pA (n 5 9) in patches from cells coexpressing v-Src (significantly different, P # 0.02, t-test).
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