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Abstract
Metallic and superparamagnetic DNA-templated nanoparticle (NP) chains are examined as
potential imaging agents. Proton relaxation times (T1 and T2) are measured for DNA
nanostructures using nuclear magnetic resonance (NMR) spectroscopy. The layer-by-layer
(LBL) method was used to encapsulate the DNA-templated NP chains and demonstrated a
change in proton relaxation times. Results from this study suggest that LBL-coated,
DNA-templated nanostructures can serve as effective imaging agents for magnetic resonance
imaging (MRI) applications.

S Online supplementary data available from stacks.iop.org/Nano/21/245103/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanosized structures have been of great interest for use as
magnetic resonance imaging (MRI) agents. In recent decades,
zero-dimensional iron oxide nanoparticles (NPs) have been
demonstrated to be a biocompatible agent that can improve
contrast for selective tissues in MRI images [1, 2]. The
zero-dimensional nanostructures, however, have low tissue-
targeting efficiency and rapid bio-distribution, resulting in an
inadequate detection of the MRI signal and image contrast [1].
Currently, this research area is focused on methods to improve
the effectiveness of contrast agents by manipulating their
structure. For instance, one-dimensional nanostructures have
been demonstrated to have higher proton relaxation rates than
zero-dimensional nanostructures [2–6]. In addition, Park
et al determined that one-dimensional, superparamagnetic
‘nanoworms’ had longer blood circulation times and higher
tissue-targeting efficiency when compared to zero-dimensional
NPs [6].

In recent years, our group has examined one-dimensional
nanostructures templated by DNA [7, 8]. Lambda-phage DNA
strands, which serve as biocompatible scaffolds, have lengths

in the micron scale and a diameter around 2 nm [9]. Its high
aspect ratio (length:diameter), charged nature and recognition
properties can be exploited to serve as a soft template for
one-dimensional nanostructure formation. DNA has been
used as a template for both metallic and magnetic materials,
such as silver [10–13], gold [14–16], palladium [17, 18],
platinum [19], nickel [20, 21], copper [22], cobalt [23], iron
oxide [5, 7] and cobalt iron oxide [24].

Superparamagnetic NPs, such as iron oxide (Fe2O3) and
cobalt iron oxide (CoFe2O4), are advantageous for MRI
applications since they exhibit magnetic moments only in
the presence of a large magnetic field. Also, compared to
paramagnetic NPs, superparamagnetic NPs have 10- to 1000-
fold greater magnetization, aiding in proton relaxation for
selective tissues. A short proton relaxation time is needed
to produce a strong signal, acquiring contrast enhancement
in MRI images [25]. Metallic NPs, such as gold (Au), are
advantageous for in vitro and in vivo applications [26]. Gold
is a soft acid that allows for strong binding of numerous
chemical functionalities, such as thiols and amines. Since the
surface modification of gold is feasible, different ligands and/or
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Scheme 1. Schematic of layer-by-layer method on DNA-templated nanoparticle chains. Polyelectrolytes (PSS and PAH) are layered up to
seven layers with an RGD-terminated poly-L-lysine peptide on the outer surface.

potential drug molecules can be attached for applications in
tissue-targeting and drug delivery.

For in vivo MRI applications, a biocompatible encapsula-
tion is needed to stabilize the NP-coated DNA structure. DNA
can be encapsulated by many different methods, such as using
diblock copolymers [27–29], nano- and hydro-gels [30, 31],
charged polymers [32], glycopolymers [33], liposomes [34, 35]
and the layer-by-layer (LBL) method [36, 37]. The LBL
method, or the layering of anionic and cationic polyelectrolytes
repeatedly, was chosen to encapsulate DNA nanostructures
because it is an inexpensive, feasible procedure to produce
a flexible, biocompatible coating. Trubetskoy et al was
the first to demonstrate that DNA can be coated by the
LBL method, exhibiting high structural stability [38]. In
addition, many groups have demonstrated that the LBL method
provides an effective surface coating for one-dimensional
nanostructures [39–45].

Herein, one-dimensional NP chains templated on double-
stranded DNA strands are examined as potential imaging
agents. First, the longitudinal (T1) and transverse (T2)
proton relaxation times for gold, iron oxide and cobalt iron
oxide nanostructures are measured through nuclear magnetic
resonance (NMR) spectroscopy. Then, a biocompatible
encapsulation of the nanostructures is constructed through the
LBL method (scheme 1) and the change in proton relaxation
times is measured. NMR was used to measure T1 and
T2 times for the nanostructures since it exhibits a higher
sensitivity than MRI. Therefore, the results collected from
NMR measurements provide an initial understanding of the
nanostructure’s relaxation properties.

2. Results and discussion

2.1. Relaxation times for DNA-templated nanoparticle chains

Poly-L-lysine-coated gold NPs (5 nm) were purchased from
Ted Pella, Inc. We synthesized both iron oxide and cobalt iron
oxide NPs following a protocol from Li et al [46] and which

results in cationically coated NPs with pyrrolidinone. DNA-
templated NP chains were fabricated as previously described
in Kinsella et al [8]. The structural formation has been studied
extensively by circular dichroism spectroscopy and atomic
force microscopy [47]. Transmission electron microscope
(TEM) images for gold, iron oxide and cobalt iron oxide NPs
exhibited agglomeration (figures 1(A)–(C)). DNA-templated
NP chains for gold, iron oxide and cobalt iron oxide are
flexible when placed in buffer solutions which can tangle if
not stretched on surfaces (figures 1(D)–(F)). While iron oxide
and cobalt iron oxide NPs demonstrated high NP coating along
the DNA strand, gold NPs aligned dispersely along DNA. The
observed particle spacing among gold NPs along DNA may be
due to the uniformity of the poly-L-lysine monolayer on the NP
surfaces [48].

Measuring the relaxation times for the NP chains is
important in order to understand their effectiveness as imaging
agents for MRI applications. A Bruker DPX300 NMR was
used to characterize the longitudinal (T1) and transverse (T2)
times for these nanostructures since it is more sensitive than
clinical MRI instruments (figure 2). A short relaxation time (T1

or T2) is needed in order to acquire a strong signal, providing
contrast in T1- and T2-weighted images.

Since proton relaxation of imaging agents is concentration-
dependent, T1 and T2 times for gold, iron oxide and cobalt iron
oxide NPs decreased as the NP concentration increased. The
observed long relaxation times for gold NPs are equal to the
values obtained for the pure solvent, D2O. At a concentration
of 1 mg ml−1, relaxation times for the superparamagnetic NPs
could not be measured. The rate of sedimentation of the NPs
was rapid and the D2O signal could not be locked in the NMR
system.

At a low mass ratio of 1:1 DNA:NP, T1 and T2 times were
faster than the relaxation times for NPs alone. The proton
relaxations observed for DNA-templated gold NP chains
may be due to the DNA linking [49] and the inter-particle
spacing [50], which has been demonstrated to enhance the
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Figure 1. TEM images of (A) gold, (B) iron oxide and (C) cobalt
iron oxide nanoparticles, along with images of DNA scaffolds of
(D) gold, (E) iron oxide and (F) cobalt iron oxide nanoparticles.

collective electromagnetic properties. For superparamagnetic
NP chains, the fast relaxation times may be due to the
addition of DNA. It has been previously demonstrated that
the longitudinal relaxivity of gadolinium increased after the
attachment of DNA [51, 52]. Furthermore, Byrne et al
determined that magnetic relaxivity was enhanced when iron
oxide NPs were covalently bound to single-stranded DNA [5].
Results from figure 2 demonstrate that proton relaxation times
for iron oxide and cobalt iron oxide nanoparticles are shortened
when electrostatically interacting with double-stranded DNA.

The alignment of the superparamagnetic NPs may also
affect the change in the relaxation times. For example,
Park et al observed that their superparamagnetic ‘nanoworms’
exhibited a higher relaxivity than dispersed NPs alone due
to the collective magnetic behavior of aligned NPs [6].
This similar collective magnetic behavior is exhibited by the
superparamagnetic NPs arranged along the DNA strands [24],
aiding in the fast longitudinal and transverse relaxation times.
In figure 2, both T1 and T2 times shortened considerably for
mass ratios of 1:5 and 1:10 DNA:NP due to the increase
in NP concentration. We have previously demonstrated
that, when one uses mass ratios greater than 1:1 DNA:NP,
this results in the fabrication of unstable structures. In
such cases we have observed NP aggregation and collected
spectroscopic evidence that DNA denaturation occurs [47].
At a mass ratio of 1:25 DNA:NP, the sedimentation rate
was rapid and relaxation times could not be measured for
the superparamagnetic NP chains. Complete NMR data
is provided in the supplementary information (available at
stacks.iop.org/Nano/21/245103/mmedia).

2.2. Relaxation times for LBL-coated, DNA-templated
nanoparticle chains

After observing that the 1:1 DNA:NP mass ratio provided
fast relaxation times, DNA-templated NP chains with
1:1 DNA:NP mass ratio were used to construct the
LBL surface coating. Poly(styrene sulfonate) (PSS) and
poly(allylamine hydrochloride) (PAH) were layered alternately
on the DNA-templated NP chains, scheme 1. Fluorescein
isothiocyanate (FITC)-labeled PAH was deposited as the
eighth polyelectrolyte layer, providing evidence of the LBL
coating in the confocal fluorescent images (figures 3(D)–(F)).
DNA coated with gold NPs exhibited complete LBL surface
coating. Conversely, DNA coated with magnetic NPs exhibited
clumping of the polyelectrolytes along the DNA strands. The
difference in LBL coating between the magnetic and metallic
NP chains is possibly due to the difference in the uniformity
of the surface coating of the nanoparticles. A more uniform
ligand coating on the gold nanoparticles provided higher LBL

Figure 2. (A) Longitudinal (T1) and (B) transverse (T2) relaxation times measured for gold, iron oxide and cobalt iron oxide nanoparticles at
different dilutions and different mass ratios with DNA template.
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Figure 3. The overlayed transmission and confocal fluorescence images exhibited no background fluorescence for (A) gold, (B) iron oxide
and (C) cobalt iron oxide NPs. LBL-coated, DNA-templated NP chains for (D) gold, (E) iron oxide and (F) cobalt iron oxide are labeled with
FITC on the outermost layer and were stretched on the glass slide.

Figure 4. Relaxation times after the deposition of each polyelectrolyte layer onto the DNA-templated NP chains. (A) T1 times for gold, (B) T2

times for gold, (C) T1 times for iron oxide and cobalt iron oxide, and (D) T2 times for iron oxide and cobalt iron oxide.

coverage than for the magnetic nanoparticles. Despite the
presence of the polyelectrolyte layers on the constructs, the
DNA-templated NP chains were able to stretch linearly on
the glass substrates, demonstrating the flexible nature of the
nanostructures after LBL encapsulation. To illustrate that
no background fluorescence was emitted from NPs alone,
they were imaged without LBL coating and FITC labeling.
The overlayed images from the transmission and fluorescent

microscope are displayed in figures 3(A)–(C) for gold, iron
oxide and cobalt iron oxide NPs, respectively.

A Bruker DPX300 NMR was used to measure the T1

and T2 relaxation times after each polyelectrolyte layer was
deposited onto the DNA-templated NP chains (figure 4). The
addition of each polyelectrolyte layer on gold DNA template
NP chains shortened T1 times. Conversely, no specific trend
was observed for the T1 relaxation times after each layer
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was deposited onto the superparamagnetic DNA-templated NP
chains. A slightly fluctuating trend is observed for the T2

relaxation times for both types of NP chains. Recently Kim
et al [53] postulated that the hydrophilic nature of the LBL
coating allowed for high accessibility of water molecules to
the magnetic agents and increased the efficiency of the proton
relaxation. This study was also able to demonstrate that coating
NPs using electrostatic interactions provided higher relaxivity
than coating NPs using covalent chemistry.

Imaging agents commonly have ligands attached on the
outer surface for targeting selective tissues. For example,
RGD peptides can be recognized by the integrin receptors on
specific tumor cells [54]. As the eighth layer, RGD-terminated
poly-L-lysine peptides were added to examine their effect on
the relaxation properties. The addition of the RGD peptide
demonstrated a 44%, 59% and 67% decrease in the transverse
relaxation times for gold, iron oxide and cobalt iron oxide
NP chains, respectively. The longitudinal relaxation time,
however, exhibited an increase after the addition of the peptide
on the DNA-templated NP chains. Since T2 relaxation times
were shortened after the addition of the peptide, these DNA-
templated NP chains may serve as efficient T2 imaging agents.

3. Conclusion

In conclusion, LBL-coated, DNA-templated NP chains for
gold, iron oxide and cobalt iron oxide were examined
as potential imaging agents. The NP chains were able
to retain their stable, flexible structure after coating with
polyelectrolytes using a straightforward LBL procedure.
Results collected from NMR measurements demonstrated that
relaxation times for nanostructures with mass ratios of 1:1
DNA:NP were faster than relaxation times for NPs alone. In
addition, NMR studies provided evidence that the LBL coating
influenced the proton relaxation times. Findings from this
study suggest that LBL-coated, DNA-templated NP chains
have the potential to serve as effective imaging agents for MRI
applications.

4. Methods

4.1. Formation of the LBL-coated, DNA-templated
nanoparticle chains

Poly-L-lysine-coated gold NPs (5 nm) were purchased from
Ted Pella, Inc. Both iron oxide and cobalt iron oxide NPs
(5 nm) were synthesized in the lab, following the protocol from
Li et al [46], and were cationically coated with pyrrolidinone.
In 1X MULTI-CORE™ buffer (Promega), 25 µl of lambda-
phage DNA (Promega: 536 µg ml−1) was added with 25 µl
of NPs (1 mg ml−1). After vortexing the solution for 1 h,
DNA-templated NP chains were formed. The layer-by-layer
method consists of layering the nanostructure using oppositely
charged polyelectrolytes. Poly(styrene sulfonate), the anionic
polyelectrolyte (Sigma-Aldrich: PSS–MW approx. 70 000),
and poly(allylamine hydrochloride), the cationic polymer
(Sigma-Aldrich: PAH–MW approx. 70 000), are layered onto
the nanostructure. After adding 4 µl of PSS (1 mg ml−1), the

solution is vortexed for 15 min at room temperature. Then,
4 µl of PAH (1 mg ml−1) is added as the second layer into
the solution, which is also vortexed for 15 min. The addition
of PSS and PAH every 15 min continues until seven layers
have been established on the nanostructure. This washless
process for layer-by-layer encapsulation is discussed further in
Bantchev et al [55]. After the seventh layer is terminated with
the anionic polyelectrolyte, PSS, then the RGD-terminated
poly-L-lysine peptide chain is added. The peptide sequence
(KKKKKKRGD) was purchased from Biosynthesis Inc. As
the eighth layer, 2 µl of the dissolved peptide (1 µg ml−1) was
added.

4.2. Nuclear magnetic resonance measurements

After all the samples were made, 100 µl of deuterium
oxide (Sigma-Aldrich: 99.9 at.%) was added to achieve
a total volume of 500 µl of the sample (leading to a
20% D2O/80% H2O content). The samples were then
degassed by purging with nitrogen gas for 1 min to ensure
the elimination of paramagnetic oxygen. Data collected
before performing the degassing procedure is shown in the
supplementary information (available at stacks.iop.org/Nano/
21/245103/mmedia). A Bruker Avance DPX300 (300 MHz),
equipped with a 5 mm QNP H1 probe, was used to measure
the longitudinal, T1, and the transverse, T2, relaxation times
for each sample with a locked signal on D2O. The inversion-
recovery pulse sequence was used to measure the longitudinal
relaxation times and the Carr–Purcell–Meiboom–Gill (CPMG)
pulse sequence was used to measure the transverse relaxation
times. A total of eight scans per spectrum were measured
for each sample, and the relaxation times and their standard
error for the T1 and T2 spectra were collected. Repetition
times were always longer than five times the T1 time. A total
of eight delays were used to acquire the T1 and T2 spectra.
Additionally, in order to ensure that the NMR signal was not
saturating the amplifier, the receiver gain for the 2D NMR
relaxation time experiments was always set lower than the
receiver gain measured for the 1D proton spectrum for each
sample. All measurements were recorded at room temperature
with no sample spinning.

4.3. Transmission electron microscope and confocal
fluorescence imaging

For TEM images, carbon film grids (400 mesh) were used
to image NPs and DNA-templated NP chains. Samples were
imaged using a Philips CM-100 TEM operated at 100 kV.
Images were captured on Kodak SO-163 electron image film.
For confocal fluorescence imaging, cleaned glass slides were
used to stretch the LBL-coated DNA nanostructures. The
eighth layer of the nanostructures contained FITC-labeled PAH
for imaging. The stretching procedure for LBL-coated DNA-
templated NP chains was adopted from Nakao et al [56].
Twenty microliters of NP chain solution was added to the
cleaned glass slide surface. Then, 40 µl of the drop was
sucked up slowly by a pipette and this allowed the LBL-coated,
DNA-templated NP chains to stretch by air–water interface
motion. The sample was set to dry overnight and was then
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rinsed with water. Images were collected by using an Olympus
(Melville, NY) IX-70 inverted confocal microscope system.
The Olympus 60×/1.2 NA water objective with the 488 nm
excitation laser was used to image the nanostructures. Images
were processed by using Fluoview™ (Olympus, Melville,
NY).
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