You might find this additional information useful...

This article cites 32 articles, 20 of which you can access free at:
http://ajpendo.physiology.org/cgi/content/full/294/2/E345#BIBL

This article has been cited by 10 other HighWire hosted articles, the first 5 are:

Reduced proteinuria using ramipril in diabetic CKD stage 1 decreases circulating cell death receptor activators concurrently with ADMA. A novel pathophysiological pathway?
[Abstract] [Full Text] [PDF]

Attenuation of renal excretory responses to ANG II during inhibition of superoxide dismutase in anesthetized rats
Md. A. H. Khan, M. T. Islam, A. Castillo and D. S. A. Majid
[Abstract] [Full Text] [PDF]

ANGIOTENSIN RECEPTOR BLOCKER TELMISARTAN IMPROVES INSULIN SENSITIVITY IN PERITONEAL DIALYSIS PATIENTS
A. Cioni, C. Sordini, I. Cavallini, R. Bigazzi and V. M. Campese
[Abstract] [Full Text] [PDF]

Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link
L. Lavie and P. Lavie
[Abstract] [Full Text] [PDF]

Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes
J. F. Ndisang, N. Lane and A. Jadhav
[Abstract] [Full Text] [PDF]

Updated information and services including high-resolution figures, can be found at:
http://ajpendo.physiology.org/cgi/content/full/294/2/E345

Additional material and information about AJP - Endocrinology and Metabolism can be found at:
http://www.the-aps.org/publications/ajpendo

This information is current as of July 11, 2010.
Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase

Yongzhong Wei,1,2 James R. Sowers,1,2 Suzanne E. Clark,1,2 Wenhan Li,1,2 Carlos M. Ferrario,3 and Craig S. Stump4,5

1Department of Internal Medicine, University of Missouri-Columbia; 2Harry S. Truman Memorial Veterans Affairs Medical Center, Columbia, Missouri; 3Wake Forest University School of Medicine, Winston-Salem, North Carolina; 4Diabetes Research Program, Department of Medicine, University of Arizona; and 5Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona

Submitted 16 July 2007; accepted in final form 7 December 2007

Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294: E345–E351, 2008. First published December 11, 2007; doi:10.1152/ajpendo.00456.2007.—Reduced insulin sensitivity is a key factor in the pathogenesis of type 2 diabetes and hypertension. Skeletal muscle insulin resistance is particularly important for its major role in insulin-mediated glucose disposal. Angiotensin II (ANG II) is integral in regulating blood pressure and plays a role in the pathogenesis of hypertension. In addition, we have documented that ANG II-induced skeletal muscle insulin resistance is associated with generation of reactive oxygen species (ROS). However, the linkage between ROS and insulin resistance in skeletal muscle remains unclear. To explore potential mechanisms, we employed the transgenic TG(mRen2)27 (Ren-2) hypertensive rat, which harbors the mouse renin transgene and exhibits elevated tissue ANG II levels, and skeletal muscle cell culture. Compared with Sprague-Dawley normotensive control rats, Ren-2 skeletal muscle exhibited significantly increased oxidative stress, NF-κB activation, and TNF-α expression, which were attenuated by in vivo treatment with an angiotensin type 1 receptor blocker (valsartan) or SOD/catalase mimetic (tempol). Moreover, ANG II treatment of L6 myotubes induced NF-κB activation and TNF-α production and decreased insulin-stimulated Akt activation and GLUT-4 glucose transporter translocation to plasma membranes. These effects were markedly diminished by treatment of myotubes with valsartan, the antioxidant N-acetylcysteine, NADPH oxidase-inhibiting peptide (gp91 ds-tat), or NF-κB inhibitor (MG-132). Similarly, NF-κB p65 subunit expression and nuclear translocation and TNF-α production but improved insulin-stimulated phosphorylation of Akt and translocation of GLUT-4. These findings suggest that NF-κB plays an important role in ANG II/ROS-induced skeletal muscle insulin resistance.

Nuclear factor-κB; reduced nicotinamide adenine dinucleotide phosphate; renin-angiotensin system; reactive oxygen species; TG(mRen2)27 rat; tumor necrosis factor-α, angiotensin receptor blocker

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Address for reprint requests and other correspondence: C. S. Stump, Diabetes Research Program, Dept. of Medicine, PO Box 245218, Univ. of Arizona, Tucson, AZ 85724 (e-mail: cstump@deptofmed.arizona.edu).

http://www.ajpendo.org
glucose transporters (GLUT-4 and GLUT-1) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA), Upstate Signaling Technology (Beverly, MA), Abcam (Cambridge, MA), and Cell Signaling (Beverly, MA); antibody against the Na-K-ATPase α1-subunit from Upstate Biotechnology (Lake Placid, NY); rat TNF-α ELISA detection kit from R & D Systems (Minneapolis, MN); NF-κB NoShift assay kit from Novagen, EMD Biosciences (San Diego, CA); ANG II, human insulin, and NADPH from Sigma (St. Louis, MO); and DMEM, FBS, and antibiotic-antimycotic solution (10,000 U/ml penicillin G, 10 mg/ml streptomycin, and 25 mg/ml amphotericin B) from GIBCO Invitrogen. The peptide gp91 ds-tat is a generous gift from Dr. Patric Pagano (Henry Ford Research Institute and Hospital, Detroit, MI), and the scrambled small interfering RNA (siRNA) as control was purchased from Bio-Synthesis (Lewisville, TX) with or without a fluorescent tag (carboxytetramethylrhodamine).

Animals and treatments. Male Ren-2 and Sprague-Dawley (SD) rats were received at 5–6 wk of age from Bowman Gray School of Medicine (Wake Forest University, Winston-Salem, NC). Animal protocols were reviewed and approved by the Harry S. Truman Veterans Affairs Medical Center Animal Care Committee. After a short period of adaptation, Ren-2 rats were randomly assigned to treatment with the AT,R blocker valsartan (RV group; 30 mg·kg⁻¹·day⁻¹) or the SOD/catalase mimetic tempol (RT group; 1 mM) in their drinking water for 21 days or remained untreated (RC group). These animals were compared with age-matched, untreated SD rats. The rats were weighed and anesthetized with pentobarbital sodium (Nembutal, 35 mg/kg ip), and soleus muscles were dissected and trimmed and frozen in liquid nitrogen and stored at −80°C, fixed, or homogenized for further analysis (see below).

Cell culture. L6 rat skeletal muscle cells (American Type Culture Collection) were grown in DMEM with 10% (vol/vol) FBS and 1% (vol/vol) antibiotic-antimycotic solution (10,000 U/ml penicillin G, 10 mg/ml streptomycin, and 25 mg/ml amphotericin B) for 30 min at 4°C. The supernatant was resuspended in 0.01 mmol/l 4-MP-100 (H9262) or control-tat (20 μM) for 1 h before ANG II incubation. After the washing steps, primary antibody (100 μl) was added to each NoShift reaction. The streptavidin plate was washed three times for 5 min with 200 μl of 11× NoShift wash buffer. Reaction solution (100 μl) was dispensed into wells of the freshly washed streptavidin plate, which was sealed with aluminum foil and incubated for 30 min at 37°C. After the washing steps, primary antibody (100 μl) was added to each well, and the sample was incubated for 60 min at 37°C. The sample was incubated in horseradish peroxidase (HPR)-conjugated secondary antibody (1:1,000) for 30 min at 37°C and then in the substrate trimethoxybenzoate for 15 min in the dark at room temperature. Thereafter, 100 μl of 1 N HCl was mixed into each well, and absorbance at 450 nm was measured using a plate reader spectrophotometer (model EL808, Bio-Tek). TNF-α immunofluorescence. Soleus muscle paraffin cross sections (5 μm) were cut for TNF-α staining. After they were dewaxed, the slides were blocked with 5% rabbit serum containing 1% BSA and 0.1% saponin. Then the slides were incubated with anti-TNF-α (1:200 dilution) overnight at 4°C. After three washes in PBS, rabbit anti-goat IgG antibody conjugated with Alexa 486 (Molecular Probes) was added for 1 h at room temperature. The sections were extensively washed in PBS and mounted on glass slides with mounting medium (Vector), and images were acquired with a fluorescence microscope (Eclipse 50i, Nikon) using Meta Imaging software (Molecular Devices).

Western blot. L6 myotubes were treated with ANG II (10⁻⁷ M) for 24 h in the absence or presence of losartan (10⁻⁶ M), N-acetylcysteine (NAC, 30 mM), or gp91 ds-tat (20 μM). Then, in some experiments, myotubes were stimulated with insulin (100 nM) for 15 min. Subcellular fractionation of myotubes was performed as previously described (30). Briefly, the myotubes were homogenized in homogenization buffer. The homogenate was centrifuged at 1,000 g for 30 min at 4°C. An aliquot of the supernatant (S1, as total homogenate) was frozen and stored at −80°C, and the remaining S1 was centrifuged at 12,000 g for 20 min at 4°C, yielding a pellet (mitochondria) and supernatant (S2). S2 was centrifuged at 30,000 g for 1 h at 4°C. The pellet containing the Golgi and sarcoplasmic reticulum was discarded, and the supernatant (S3) was centrifuged at 100,000 g to enrich the plasma membrane fraction (PM) in the pellet and separate the cytosolic fraction (supernatant). Protein concentrations were determined by the method of Bradford (Bio-Rad reagent). Protein (40 μg) from S2 was loaded in 10% SDS-PAGE gel and probed with rabbit anti-Actin or phosphorylated (Ser³²³) Akt (1:1,000 dilution) antibodies. Forty micrograms of PM-enriched fraction and total homogenate (S2 protein) were subjected to 10% SDS-PAGE gel and probed with rabbit anti-GLUT-4 (1:1,000 dilution in 5% milk-TBS). PM enrichment was confirmed by Na-K-ATPase α1-subunit immunoblotting. An HRP-coupled secondary anti-rabbit IgG antibody was applied and reacted with enhanced chemiluminescence reagent (Amersham Life Science). The membranes were read and quantified with the Bio-Rad Molecular Imager FX Pro Plus MultiImager System. β-Actin was used as a loading control.
buffer, 0.01 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 2 μM leupeptin, and 2 μM pepstatin A (pH 7.4) using a Duall homogenizer. The homogenate was centrifuged at 1,000 g for 30 min at 4°C, and the supernatant (S1) was further centrifuged at 13,000 g for 20 min at 4°C, yielding supernatant (S2) and a pellet containing mitochondria. Forty micrograms of protein (S2) were loaded in SDS-PAGE gel and probed with primary antibodies (1:1,000 dilution) against 4-HNE-modified proteins. After the membrane was washed, it was incubated with HRP-conjugated secondary antibodies (1:10,000 dilution). The intensities of the immunoblot lanes were quantified using Quantity One software (Bio-Rad). β-Actin was used as a loading control.

\textit{RT-PCR amplification.} TNF-α mRNA expression was measured by RT-PCR using the following primers: TGGCCCCAGACCCCTCA-CACTC (forward) and CTCCTGGTATGAAATGGCAAATC (reverse). For determination of the relative initial amounts of TNF-α cDNA, the cDNA sample was serially diluted 1:5 and 1:25. GAPDH was used as a housekeeping gene to verify that the same amount of RNA was amplified. The PCR products were analyzed using a digital imaging system (Kodak).

\textit{TNF-α ELISA.} L6 myotubes were stimulated with 10^{-8}–10^{-5} mM ANG II, with and without inhibitors (see Fig. 4), for 24 h. Media samples were collected and centrifuged at 1,000 g for 30 min. TNF-α was determined in supernatants using ELISA according to the manufacturer’s instruction (R & D Systems).

\textit{Statistical analysis.} Values are means ± SE from at least three different experiments. One-way ANOVA or Student’s t-test was used to determine the significance between groups. When an ANOVA F-test indicated significance, a protected Fisher’s least significant difference post hoc analysis was performed. $P < 0.05$ was considered to be statistically significant.

\section*{RESULTS}

\textit{Increased oxidative stress in soleus muscle from Ren-2 rats.} Using a lucigenin assay, we showed that ANG II increases ROS formation in soleus muscle from Ren-2 rats (3) and L6 myotubes (30). ROS are short-lived molecules that exert local effects, such as increased formation of aldehyde by-products, including 4-HNE, which have longer half-lives than ROS (4, 6). Therefore, 4-HNE is considered to be a reliable index of the deleterious effects of ROS on various cellular components, including membranes, proteins, and DNA (4). Western blot analysis and immunohistochemistry have been used to detect modified proteins by 4-HNE (15). In the present study, 4-HNE staining on Western blot was more intense in soleus muscles from Ren-2 (RC) than SD (194%) rats (Fig. 1A). When Ren-2 rats were treated with valsartan (RV) or tempol (RT), 4-HNE was significantly reduced compared with untreated RC rats (Fig. 1A). Similarly, immunofluorescent staining of soleus muscle sections showed greater 4-HNE accumulation in Ren-2 rats than SD controls and a reduction of 4-HNE staining intensity by valsartan or tempol (Fig. 1B).

\textit{Increased NF-κB activation in soleus muscle from Ren-2 rats.} Oxidative stress activates multiple redox signaling pathways, including NF-κB (13). To test whether increased oxidative stress induced by ANG II is associated with NF-κB activation in Ren-2 skeletal muscle, nuclear fractions were isolated and NF-κB p65 nuclear translocation was determined by NoShift assay. NF-κB p65 nuclear translocation was significantly increased by 189% in soleus muscles from Ren-2 compared with SD rats (Fig. 2A). However, NF-κB p65 nuclear translocation was greatly attenuated in muscle from Ren-2 rats treated with valsartan or tempol. Under these conditions, NF-κB activation was significantly correlated ($r = 0.786, P < 0.01$) to 4-HNE levels in rat skeletal muscle (Fig. 2B). Moreover, decreased levels of cytosolic IkBα were detected in Ren-2 skeletal muscle, whereas valsartan or tempol reversed this effect (Fig. 2C).
Increased TNF-α expression in soleus muscle from Ren-2 rats. NF-κB activation is known to upregulate inflammatory cytokines such as TNF-α (12), whereas TNF-α is a multifunctional cytokine that has been linked to insulin resistance (26). To determine whether NF-κB activation in skeletal muscle is associated with an increase in the inflammatory cytokine TNF-α, RT-PCR and immunostaining were performed. TNF-α mRNA and protein levels were greater in skeletal muscle from Ren-2 than SD rats (Fig. 2, D and E). Again, this effect was attenuated in Ren-2 soleus muscle treated with the AT1R blocker valsartan or the superoxide scavenger tempol (Fig. 2, D and E).

ANG II-induced ROS activates NF-κB in L6 myotubes. The above-described in vivo results from Ren-2 rats suggest that increased ROS might mediate the ANG II-induced NF-κB activation expression in skeletal muscle. To further evaluate this possibility, L6 myoblasts were differentiated into myotubes and then treated with ANG II alone or ANG II plus each of the following: gp91 ds-tat (a specific NADPH inhibitor peptide that blocks p47phox binding to gp91phox), valsartan (an AT1R blocker), NAC (an antioxidant), or MG-132 (an NF-κB inhibitor). NF-κB p65 nuclear translocation and cytosolic IκBα were determined by NoShift assay and immunoblot, respectively. ANG II significantly increased NF-κB p65 nuclear translocation, and concomitant treatment with gp91 ds-tat, valsartan, NAC, or MG-132 inhibited ANG II-induced NF-κB p65 nuclear binding activity in L6 myotubes (Fig. 3A). Furthermore, when L6 myotubes were transfected with NF-κB p65 siRNA, not only was p65 subunit expression reduced (Fig. 3B), but NF-κB nuclear translocation in the presence of ANG II was significantly lower than when L6 myotubes were transfected with scrambled siRNA or treated with ANG II alone (Fig. 3C). NF-κB translocation with and without inhibitors was inversely associated with cytosolic IκBα protein levels measured by Western blotting (data not shown).

ANG II-induced NF-κB activation mediated TNF-α production in L6 myotubes. ANG II induced TNF-α production in a dose-dependent manner that reached statistical significance at 10−7 M ANG II compared with untreated L6 myotubes (Fig. 4A). Alternatively, coadministration of valsartan, NAC, gp91 ds-tat, or MG-132 reversed ANG II-induced TNF-α production in L6 myotubes. Similarly, coadministration of the NF-κB inhibitor MG-132 (Fig. 4B) or transfection of NF-κB p65 siRNA (Fig. 4C) reversed ANG II-induced TNF-α production in the presence of ANG II. These findings suggest that increased TNF-α production by skeletal muscle in the presence of ANG II is mediated by ROS-induced NF-κB activation.
NF-κB activation in skeletal muscle insulin resistance

The prevalence of the metabolic syndrome is steadily increasing. Hypertension and type 2 diabetes mellitus, two important manifestations of the metabolic syndrome, often coexist and frequently progress to cardiovascular disease. Insulin resistance plays a central role in the pathogenesis of the metabolic syndrome. This may be attributable in part to ANG II, which not only plays a pivotal role in the development of hypertension, but it also impairs insulin action on skeletal muscle via the AT1R (25, 26). As the major tissue for insulin-mediated glucose disposal, skeletal muscle is particularly crucial in the development of insulin resistance. Skeletal muscle expresses many components of RAS, including AT1R (26), and ANG II has direct effects on skeletal muscle via the AT1R (25, 26).

Inhibition of NF-κB improved insulin-mediated phosphorylation (Ser473) of Akt and translocation of GLUT-4 in L6 myotubes. To determine whether activation of NF-κB mediates ANG II-induced insulin resistance in skeletal muscle, L6 myotubes were preincubated with valsartan, NAC, gp91 ds-tat, or the NF-κB inhibitor MG-132 for 1 h and then coincubated with ANG II for 24 h. Then the myotubes were exposed to insulin (100 nM) for 15 min. Phosphorylation (Ser473) of Akt (Fig. 5C) and translocation of GLUT-4 in L6 myotube PM (Fig. 5D). GLUT-1 transporter levels, while detected in L6 myotube PM, were not altered by ANG II (data not shown).

DISCUSSION

NF-κB p65 siRNA knockdown of p65 protein expression prevented ANG II inhibition of insulin signaling. To further confirm the role of NF-κB in ANG II-induced skeletal muscle insulin resistance, siRNA targeting NF-κB subunit p65 was employed in L6 myotubes. NF-κB p65 siRNA transfection significantly reduced NF-κB p65 levels and inhibited ANG II-induced NF-κB activation (Fig. 3, B and C) while also reversing decreases in insulin-stimulated phosphorylation (Ser473) of Akt (Fig. 5C) and translocation of GLUT-4 in L6 myotube PM (Fig. 5D). GLUT-1 transporter levels, while detected in L6 myotube PM, were not altered by ANG II (data not shown).

Fig. 3. NF-κB nuclear translocation in L6 myotubes. A: NF-κB nuclear translocation (activation) detected by NoShift assay. ANG II significantly induced NF-κB p65 nuclear translocation, which was prevented by the ANG II type 1 receptor (AT1R) blocker valsartan (Val), the antioxidant N-acetyl-cysteine (NAC), the NADPH oxidase inhibitor peptide gp91 ds-tat, or the NF-κB inhibitor MG-132. *P < 0.05 vs. untreated control. #P < 0.05 vs. ANG II alone. B: NF-κB p65 protein levels were not affected by ANG II alone or ANG II with scrambled RNA. Small interfering RNA (siRNA) targeting of NF-κB p65 subunit significantly decreased p65 protein levels in L6 myotubes compared with ANG II alone. *P < 0.05. C: NF-κB p65 siRNA significantly attenuated ANG II-induced NF-κB p65 nuclear translocation compared with scrambled RNA. *P < 0.05, ANG II alone vs. no treatment. #P < 0.05, NF-κB p65 siRNA vs. ANG II alone. Values are means ± SE for 3 separate experiments with triplex wells for each group.

Fig. 4. ANG II-induced TNF-α production detected by ELISA in L6 myotubes. A: ANG II induced TNF-α production in a dose-dependent manner. *P < 0.05 vs. no treatment. B: inhibition of ANG II-induced increase in TNF-α production by the AT1R blocker valsartan, the antioxidant NAC, the NADPH oxidase inhibitor gp91 ds-tat peptide, and the NF-κB inhibitor MG-132. *P < 0.05 vs. no treatment (Con). #P < 0.05 vs. ANG II alone. C: significant reduction of L6 myotube TNF-α production in the presence of ANG II by NF-κB p65 siRNA, but not scrambled siRNA. *P < 0.05 vs. no treatment. #P < 0.05 vs. ANG II alone. Values are means ± SE for 3 separate experiments with triplex wells for each group.
Fig. 5. Insulin-stimulated phosphorylation (Ser473) of Akt and translocation of GLUT-4 to plasma membrane (PM) in L6 myotubes. Representative immunoblots and bar graphs indicating mean ± SE for insulin-mediated phosphorylation (Ser473) of Akt and translocation of GLUT-4 in untreated L6 myotubes or myotubes treated with 10−7 M ANG II, with or without valsartan, NAC, gp91 ds-tat, or MG-132. *P < 0.05 vs. no treatment. **P < 0.05 vs. insulin (INS) alone. #P < 0.05 vs. ANG II + INS. C and D: knockdown of NF-κB p65 improved insulin-mediated phosphorylation (Ser473) of Akt and translocation of GLUT-4 to the PM. **P < 0.05 vs. no treatment. ***P < 0.05 vs. INS alone. #P < 0.05 vs. ANG II + INS. Values are means ± SE for 3 separate experiments with triplex wells for each group.
ANG II–induced reductions in insulin-mediated Akt activation and GLUT-4 translocation.

Collectively, several novel findings were demonstrated in the present investigation. 1) NF-κB activation and nuclear translocation are required for ANG II–induced insulin resistance in skeletal muscle. 2) ANG II increased NF-κB activation and TNF-α production, which were dependent on NADPH oxidase–derived ROS. 3) Blocking the AT₁R, inhibiting NADPH oxidase, or preventing NF-κB activation attenuated TNF-α increases in cultured myotubes. The data provide solid evidence indicating that NADPH oxidase–generated ROS activates NF-κB, thus linking ANG II, ROS, and insulin resistance in skeletal muscle. These findings may provide important insights into the pathogenesis and potential targets for treatment that might play a pivotal role in alleviating ANG II–induced insulin resistance.

GRANTS

This work was supported by National Heart, Lung, and Blood Institute Grant R01-HL-073101-02, Veterans Affairs Merit Award 0018, and Novartis Pharmaceuticals (J. R. Sowers) and Department of Veterans Affairs Veterans Integrated Service Network 15 and Advanced Research Career Development Awards (C. S. Stump).

REFERENCES